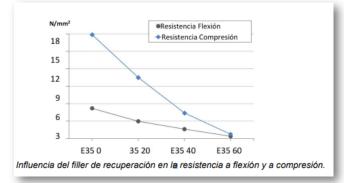


XV Jornada Nacional de Asefma 1-2 de diciembre de 2020

Bloque I Comunicaciones libres no seleccionadas


Francisco Lucas
Miembro Comisión Técnica de Asefma
@curro_lucas

Estudio del potencial de valorización y reutilización del filler de recuperación de las

plantas asfálticas en aplicaciones constructivas (S. Serrano et. al)

- ▶ OBJETIVO: Reutilización del fíller de recuperación como material componente en el yeso. Economía Circular
- ▶ **DESARROLLO Y RESULTADOS**: Muestras con el 0%, 20%, 40% y 60%
 - Estabilidad Dimensional (Retracción/Expansión)
 - Porosidad y Densidad Aparente
 - Absorción de agua por capilaridad
 - Fuerza de adherencia (Diferentes soportes)
 - Resistencia a flexión y compresión

► CONCLUSIONES: Viabilidad de empleo en yesos para revestimientos con dosificaciones de fíller <40%

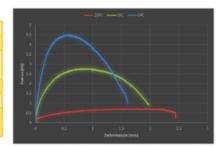
Mezclas bituminosas especiales para la utilización en zonas sometidas a elevados esfuerzos tangenciales (J. Loma y F. Guisado)

- ▶ OBJETIVO: Diseño y aplicación de mezcla BBTM 11A que presente una mayor resistencia a esfuerzos tangenciales en superficie. Durabilidad
- DESARROLLO Y RESULTADOS:
 - Aplicación en Glorietas AP6 y N6
 - Empleo de un ligante de altas prestaciones PMB 45/80-75 sin incremento de T^a de fabricación y aplicación. F.D.
 >9 J/cm2. Análisis empírico y prestacional
 - Empleo de fibras de celulosa
 - Análisis prestacional de la mezcla

Mezclas bituminosas especiales para la utilización en zonas sometidas a

elevados esfuerzos tangenciales (J. Loma y F. Guisado)

Ensayo densidad aparente, UNE-EN 12697-6 (impacto 50x2)		Ensayo sensibilidad al agua, UNE-EN 12697-12.(1) (impacto 50x2)	
Densidad aparente, Kg/m³ 2346		Densidad aparente, Kg/m ³	2354
Huecos en mezcla, %	3,8	Resistencia aire ITS, MPa	1,20
Huecos en áridos, %	18,3	Resistencia inmersión ITS, MPa	1,17
Huecos rellenos, %	79,3	Resistencia conservada ITSR, %	97,9


(*) NOTA: Inmersión seria agua 72 horas a 40 °C. Ensayo a la temperatura de 15°C

Ensayo de pérdida por desgaste		Ensayo densidad máxima, UNE-EN	
(Cántabro), UNE EN 12697-17.		12697-5.	
Pérdida en seco, % 2,2		Densidad máxima, Kg/m ³	2439

Ensayo de rodadura, UNE EN 12697-22(**),		Escurrimiento de ligante, UNE-EN	
Método B en aire.		12697-18. Método Schellemberg	
PRD, %	3,159	Ligante migrado, %	0,06
RD, mm.	1,264	Residuo recogido, %	0,00
WTS aire	0,043		

^{(&}quot;) NOTA: Temperatura ensayo, 60°C. Espesor de probeta 40 mm.

Temperatura, °C	20	5	0
RT, Resistencia a tracción, MPa	0,46	1,67	2,88
IRT, Índice de rigidez a tracción, KN/mm*	0,99	16,3	38,8
Gf, Energía disipada, J/m ^{2**}	907	2213	3399
Índice de tenacidad, J/m² mm***	411	1739	1534
Deformación fuerza máxima, D	1,49	0,82	0,56
F _{max} , mm			

► CONCLUSIONES: En el marco de la normativa vigente, se pueden diseñar mezclas de altas prestaciones, sin necesidad de incrementar T^a

Mezclas anticarburantes fabricadas con tóner de impresoras, en respuesta a la

economía circular (J. Loma et al)

- ▶ OBJETIVO: Reutilización del tóner de impresoras como material constitutivo de las mezclas resistentes a la acción de carburantes. Economía Circular
- DESARROLLO Y RESULTADOS:
 - Aplicación en Intercambiador de Autobuses Reina Victoria (Madrid)
 - Mezcla AC16SURF 50/70S
 - Empleo de aditivo tóner 0,7%
 - Evaluación resistencia a acción de carburantes UNE EN 12697-43

Mezclas anticarburantes fabricadas con tóner de impresoras, en respuesta a la

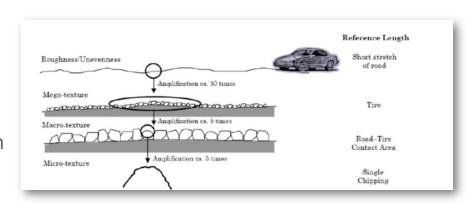
economía circular (J. Loma et al)

-

Dato	AC16S DANOX
Ligante en mezcla, %	5,14
Densidad, kg/m ³	2334
Densidad máxima, kg/m³	2452
% Huecos-mezcla	4,8
Cántabro aire 25 °C, en % pérdida	5,3
Cántabro 25 °C, tras inmersión probetas 24 h en gasoil	16,4
Diferencia cántabro aire-inmersión gasoil	11,1
Marshall probetas aire, kN	25,72
Marshall probetas tras inmersión 24 h. en gasoil, kN	16,78
Diferencia Marshall aire-inmersión gasoil, %	34,8
Tracción indirecta probetas aire, MPa	2,788
Tracción indirecta probetas tras inmersión 24 h. en gasoil, MPa	1,805
Diferencia tracción aire-inmersión gasoil, %	35,28
Resistencia combustibles, perdida masa ^{24 h en gasoll} A, %	1
Resistencia combustibles, perdida tras cepillado ^{24 h en gasoil} B, %	3
Resistencia combustibles, perdida combinada de masa, C %	4
Como A es ≤5% y 1%≤B≤5% la resistencia a ese combustible es	moderada

CONCLUSIONES: Viabilidad en la valorización de los residuos del tóner de impresoras en MB. Comportamiento moderado en resistencia a la acción de carburantes.

Estudio de la micro y macrotextura de pavimentos y correlación con la resistencia al


deslizamiento medido con péndulo de fricción (P.M. Benito et al)

OBJETIVO: Correlacionar la textura del pavimento con la resistencia al deslizamiento.
 SEGURIDAD VIAL

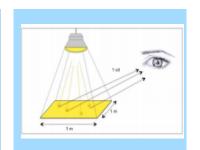
DESARROLLO Y RESULTADOS:

- ► Empleo del péndulo de fricción y el perfilómetro laser
- Pavimento seco y mojado
- Estudio de 5 pavimentos diferentes: Asfalto, Hormigón



Estudio de la micro y macrotextura de pavimentos y correlación con la resistencia al

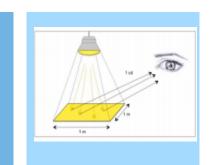
deslizamiento medido con péndulo de fricción (P.M. Benito et al)


PAVIMENTO SECO		PAVIEMENTO HÚMEDO
P. hormigón textura baja (e)	+	P. hormigón textura media (d)
P. AC16 desgastado (a)	Ē 1	P. hormigón textura baja (e)
P. AC16 nuevo (b)	₹ ∧	P. AC16 desgastado (a)
P. hormigón con juntas (c)	ESL	P. hormigón con juntas (c)
P. hormigón textura media (d)	₽ ↑	P. AC16 nuevo (b)

► CONCLUSIONES: No se ha podido correlacionar linealmente textura y resistencia al deslizamiento. Se aprecia tendencia a la mayor influencia de la microtextura.

Pavimentos asfálticos reflectantes.

Tramos experimentales (J. Simón et al)



- ▶ OBJETIVO: Presentar resultados de Proyecto Repara 2.0 (CDTI/FEDER). Diseño de pavimentos de alta reflectancia, capaces de reducir el calentamiento actual de las superficies de las ciudades. CALENTAMIENTO GLOBAL
- DESARROLLO Y RESULTADOS:
 - ▶ Referencias a la comunicación Jornada Asefma 2017. Premisas de partida
 - ► Realización de 2 tramos experimentales en Murcia
 - Caracterización mecánica de mezcla
 - Medidas de la Reflectancia Solar y Luminancia
 - Medidas de la T^a Superficial

Pavimentos asfálticos reflectantes.

Tramos experimentales (J. Simón et al)

	ENSAYO	NORMA	MEZCLA CONVENCIONAL	MEZCLA REFLECTANTE
DENSIDAD MÁXI	MA - Kgs/m³	UNE-EN 12697-5	2555	2538
DENSIDAD APAR	ENTE - Kgs/m²	UNE-EN 12697-6	2425	2401
HUECOS MEZCLA	1-%	UNE-EN 12697-8	5,1	5,4
ENSAYO DE RODADURA	WTS aire	UNE-EN 12697-22	0,028	0,017
	RD-mm		1,45	0,7
	PRD		3,6	1,8
ENSAYO DE SENSIBILIDAD AL AGUA	Resistencia conservada - ITSR-%	UNE-EN 12697-12	93,1	93,9
	Tracción indirecta - ITSd - Kpa		2115	2250
Ensayo de rigis	iez- MPa	UNE-EN 12697-26 Anexo C	4454	5128

MEDIDAS DE REFLECTANCIA ASTM E1918-06	MEZCLA CONVENCIONAL	MEZCLA REFLECTANTE		
ESPECTRO SOLAR - SR	5	39		
	TEMPERATURA SUPERFICIAL			
Tº ambiente y radiación solar	MEZCLA CONVENCIONAL	MEZCLA REFLECTANTE		
25 ºC - 750 w/m²	45,9	36,7		
33 ºC - 900 w/m ²	63	52,8		

► CONCLUSIONES: Con este tipo de mezclas, se mitiga el efecto "Isla Calor" en entornos urbanos.

SISTEMA INTEGRAL DE MANTENIMIENTO

EFICIENTE DE PAVIMENTOS URBANOS. SIMEPU (J.R. López et al)

- OBJETIVO: Dar respuesta al mantenimiento de pavimentos urbanos mediante sistema integral digital de adquisición de datos y toma de decisión a bajo coste. DIGITALIZACIÓN
- DESARROLLO Y RESULTADOS:
 - Videocámaras de bajo coste instaladas en vehículos, Geolocalización GPS y Procesamiento Datos DEEP
 LEARNING
 - Sistema de Información Geográfica S.I.G.:
 - Evaluación del estado del firme
 - Modelos predicitvos de daño
 - Priorización de Alternativas
 - ► CONCLUSIONES: Herramienta de enorme interés para gestión de pavimentos.

XV Jornada Nacional de Asefma 1-2 de diciembre de 2020

Gracias por su atención!

Francisco Lucas
Miembro Comisión Técnica de Asefma
@curro_lucas