

asefma XV Jornada Nacional de Asefma 1-2 de diciembre de 2020 Exploring the impact of road surface conditions on truck fleet fuel consumption using Big Data

Tony Parry (NTEC, University of Nottingham) Federico Perrotta (AECOM) contacto: tony.parry@nottingham.ac.uk

Background

- Experiments (e.g. Sandberg et al 2011) and modelling (e.g. Chatti and Zaabar 2012) suggest that road surface characteristics (evenness and texture) can influence fuel consumption by up to 5%
- But maybe only 2% or 3% for UK highways
- So road maintenance could save fuel consumption, costs and emissions for the whole vehicle fleet (unlike new vehicle technologies)
- But these experiments and models are soon out of date
- And the findings are difficult to validate for real vehicle fleets, at network level and for real driving conditions where measurements are confounded by so many variables.

Big Data

.....

Data from sensors installed on modern trucks inform fleet managers (SAE J1939)

A model for:

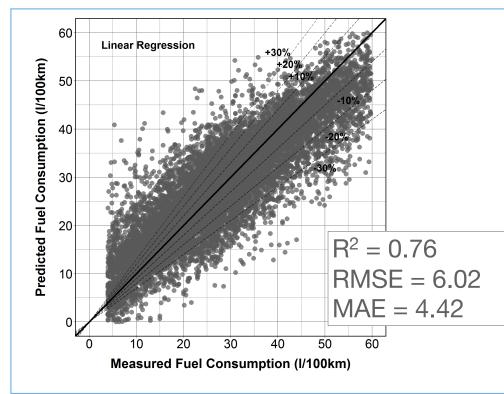
highways england

- Routing of vehicles;
- Help in the design and maintenance of pavements;
- Improve Life Cycle Assessment and Life Cycle Cost Analysis of road pavements
- Live network, truck and fuel consumption information

England Case Study

During 1 week in October 2016:

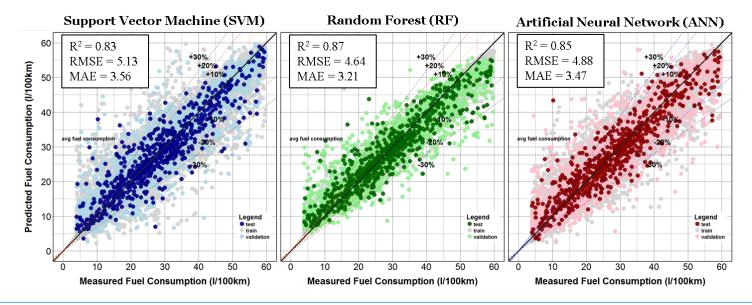
- ~ 300 km of motorway
- Constant speed (+/- 2.5 km/h)
- 1,110 articulated trucks (Euro 6 with 6 axles)
- 14,281 records
- 1 minute or 1 mile
- Fuel used in 0.001 l

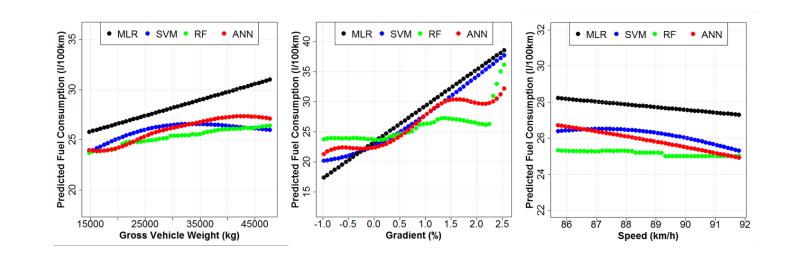


Included Variables

- Gross Vehicle Weight
- Vehicle constant speed (+/- 2.5 km/h)
- Acceleration
- Torque Start
- Torque End
- Revolutions
- Gear
- Cruise control

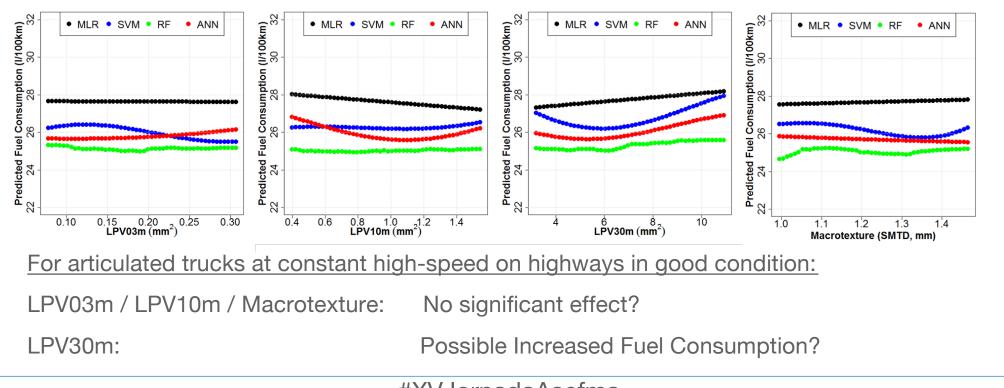
- Road gradient
- Radius of curvature
- Unevenness LPV03 m
- Unevenness LPV10 m
- Unevenness LPV30 m
- Macrotexture (SMTD)


Multiple Linear Regression


Can we improve this using machine learning?

Machine Learning

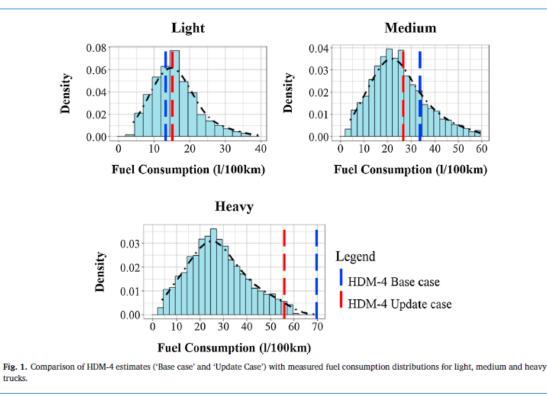
72% records for training, 23% records for validation, 5% records for test 10-fold cross-validation: R², RMSE, and MAE calculated on test sets (average of 10).



Parametric Analysis

Parametric Analysis

Perrotta et al (2017) DOI: 10.1109/BigData.2017.8258382


Ongoing before-and-after maintenance studies

HDM4 Calibration

Perrotta et al (2019) DOI: 10.1016/j.trd.2018.11.001

Roundabout Collision Risk

Kamla et al (2019) DOI: 10.1016/j.aap.2018.04.31

Fig. 1. Grade-separated roundabout (J28 on M1 motorway, UK) with accident (left) and truck HBI (right) positions.

Roundabout Collision Risk

Kamla et al (2019) DOI: 10.1016/j.aap.2018.04.31

Table 7

Roundabout category	Variable	Total accident numbers	Truck accident numbers	HBI numbers
Whole roundabouts	ln(AADT)	<u> </u>	<u>^</u>	<u>^ </u>
	Percentage of average annual daily truck traffic	86% 1	$\wedge \uparrow$	$\Lambda \Lambda$
	Un-signalised roundabouts compared to partially signalised roundabouts	$\checkmark \checkmark$	44	51%
	Signalised roundabouts compared to partially signalised roundabouts	-	76%	48% \downarrow 🗸
	Two-lane roundabouts compared to three-lane roundabouts	-	66% 🗸	-
	ICD	1	1	-
	Three-arm roundabouts compared to six-arm roundabouts	-	↓↓	48% √√
	Circulatory roadway width	-	\downarrow \downarrow	$\sqrt{\sqrt{1}}$
	Entry width	-	-	^

Conclusions

- Case study shows the feasibility of using Big Data to:
 - Monitor the impact of road condition on vehicle fuel consumption
 - For real vehicles and driving conditions at highway network level
 - Continuously
- Many other potential uses for this Big Data approach, including:
 - Calibration of pavement-vehicle interaction models
 - Life Cycle Assessment use phase / Life Cycle Cost Analysis of road maintenance
 - Collision risk

ASCEACCON ESPARIOLA DE FARRICANTES DE MEZCLAS ASFALTICAS XV Jornada Nacional de Asefma 1-2 de diciembre de 2020

Gracias por su atención!!

tony.parry@nottingham.ac.uk